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Executive Summary

• Why ? 
• Existing quantization data-formats lack adaptability and/or are inefficient for implementation in 

resource-constrained devices.
• Lack of a generalized quantization framework in prior art.

• What ?
• Design of a composite data type called Logarithmic Posits (LP) that blends the adaptability of posits 

with hardware efficiency of Logarithmic Numbers.
• Novel genetic-algorithm based quantization framework leveraging contrastive learning for identifying 

layer-wise mixed-precision quantization parameters.
• Unified mixed-precision Logarithmic Posit Accelerator (LPA) for high throughput DNN inference.

• How ?
• Employs a co-design approach, integrating the development of the LP data type, the quantization 

framework, and the LPA architecture. This integrated approach allows for dynamic adaptation to 
DNN parameter distributions, resulting in highly efficient DNN inference.
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From Bulky DNNs to Sleek Edge Deployment!

v YoY increase in DNN sizes leads to escalating computational and storage demands!
v Limited compute, storage resources and energy budget of edge devices (e.g., phones) 

makes deployment challenging!

3Source: NVIDIA, Viso.ai, LifeArchitect.ai 



From Bulky DNNs to Sleek Edge Deployment!

Model Compression techniques for efficient DNN deployment:

Pruning Quantization

4Source: Rahul, M et al. "A survey on deep neural network compression: 
challenges, overview, and solutions." arXiv preprint arXiv:2010.03954 (2020).



From Bulky DNNs to Sleek Edge Deployment!

Model Compression techniques for efficient DNN deployment:

Pruning Quantization

Focus of our work!

5Source: Rahul, M et al. "A survey on deep neural network compression: 
challenges, overview, and solutions." arXiv preprint arXiv:2010.03954 (2020).



Background: Types of Quantization Techniques

PTQ
QAT

Quantization Aware Training 
(QAT):

Higher Accuracy
Improved Model Robustness

❌ Increased training complexity 
and time
❌ Large-scale data dependency

Post Training Quantization (PTQ):

Speed and Simplicity
Low data requirement (Can also 
be data-free)

❌ Potential accuracy drop 
❌ Sensitivity to calibration dataset

Focus of our work!

6Source: Bai, Haoli, et al. "Towards efficient post-training quantization of pr-
trained language models." NeurIPS 2022.



Background: Types of Quantization Formats
Uniform Quantization

Ø Assigns same quantization step size 
cross the entire range of values.

Ø Results in simpler hardware but 
leads to higher quantization error 
for distributions with large variances.

Ø Example: Integers.

Non-Uniform Quantization

Ø Has variable distribution intervals, for selective 
quantization for significant data or extensive 
dynamic ranges.

Ø Potentially complex hardware and requires 
automated quantization algorithms.

Ø Example: IEEE-754 Floating-Point, Posits, 
Vector Quantization, Logarithmic Posits.

7Source: Liu, Fangxin, et al. "Improving neural network efficiency via post-training 
quantization with adaptive floating-point." CVPR. 2021.



Problem: Non-smooth Loss Landscape
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DNNs particularly depict a non-smooth quantization 
loss landscape.

(a) PSAQ-ViT v2 (b) CLAMP-ViT

Jagged and non-smooth peaks arise 
from weight perturbations during the 
quantization process

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Problem: Gradient-Descent Cannot Traverse this Landscape
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First and second-order gradient cannot be used 
satisfactorily to traverse this non-smooth loss landscape 
because of the presence of multiple local-minima.

Genetic Algorithm Search Candidates

GA-based search is able to traverse this 
loss landscape and optimally identify 
quantization parameters 



Our Solution
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We therefore adopt a GA based layer-wise quantization 
framework.

Why layer wise ? Perturbing too many layers at a time can 
cause traversal of a high-dimensional search space and does 
not guarantee convergence.

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Background: Genetic Algorithm

Consider a population of randomly rabbits: some individuals are potentially faster 
and smarter than others.
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Background: Genetic Algorithm

Ø Slower, dumber rabbits are likely to be caught and eaten by foxes.
Ø Fast, smart rabbits survive to do what rabbits to best: make more rabbits!!
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Background: Genetic Algorithm

Ø The rabbits that survive breed with each other to generate offspring, which 
starts to mix up their genetic traits

Ø – Fast rabbits might breed with fast rabbits
Ø – Fast rabbits with slow rabbits
Ø – Smart with not-so-smart, etc...

Ø Furthermore, nature occasionally throws in a “wild hare” because genes can 
mutate.
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Background: Genetic Algorithm

Ø At the end the rabbits that survive will be the fastest, strongest and smartest 
among the population because the fox would’ve eaten the slow, weak and 
not-so-smart ones.

Ø In this analogy, an individual rabbit represents a solution to the problem (i.e. a 
single point in the state space).

Ø The foxes represent the problem constraints – Solutions that do well are 
likely to survive.

Ø We create similar such notions for quantization.
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Proposed: Automated Quantization Framework

15

128 calibration images drawn from training set

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Proposed: Automated Quantization Framework
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Full-Precision Model

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Proposed: Automated Quantization Framework
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Randomly initialized 
model for quantization

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Proposed: Automated Quantization Framework
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Fitness Function

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Proposed: Automated Quantization Framework
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Repeat N times per layer

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Automated Quantization Framework: Step 1
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A quantization solution comprises an encoded vector Δ of length 2𝑁 and each 
set of 2 values represent the 2 integer quantization parameters of a layer 𝑙.

Fitness value of each candidate

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Automated Quantization Framework: Fitness 
Function Calculation
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Ø Experiments in self-supervised learning and our 
own experiments suggest that contrastive 
learning tend to smooth the loss landscape.

(a) PSAQ-ViT v2 (b) CLAMP-ViTWith Contrastive Learning

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Automated Quantization Framework: Fitness 
Function Calculation

The contrastive component of fitness function aims to align the distribution 
of quantized model’s intermediate representations closely with the FP 
model, while the compression ratio metric incentivizes lower bit-widths

22Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Automated Quantization Framework: Step 2

23Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).

For each selected block perform regeneration and 
crossover.



Automated Quantization Framework: Step 3
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We create additional random parents and use the 
regenerated child in the previous stage as the other parent 
to generate five diverse children.

Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Automated Quantization Framework: Step 4

25Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Activation Quantization

Activation quantization sensitivity closely aligns with that of the weight 
parameters producing them.

The output activation quantization parameters for layer i are 
determined as,

26Source: Ramachandran, A, et al. "Algorithm-Hardware Co-Design of Distribution-Aware 
Logarithmic-Posit Encodings for Efficient DNN Inference." arXiv preprint arXiv:2403.05465 (2024).



Challenges with Traditional Quantization

LP: Logarithmic Posit
AF: AdaptivFloat

Ø Uniform Quantization techniques lack the dynamic range and distributional variance required of DNNs.
Ø Floating-point based non-uniform quantization techniques fail to adapt to the different DNN distributions 

and have flat accuracy.
Ø Vector Quantization is adaptive but introduces additional codebook overhead.
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Next Generation Arithmetic: Posits

Generic n-bits Posit format

Ø Possesses the unique field called regime that dynamically varies between [2, n-1] bits. It dynamically varies the 
exponent and fraction fields to give tapered accuracy and varied dynamic ranges.

Ø The regime is a run-length encoding of m 0s (1s) terminated by a 1(0), respectively, or by the final bit. The 
regime value 𝑘 is determined as 𝑘 =−𝑚 if the first bit of the regime is 0, or 𝑘 = 𝑚−1 otherwise.
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Logarithmic Posits

Ø A composite datatype that blends the adaptability of Posits with the hardware-efficiency of Logarithmic Number System (LNS).

Ø Parameterizations introduced for adaptability:
Ø Bits (n): Identify optimal precision for a DNN layer.
Ø Exponent Size (es): Controls dynamic range.
Ø Regime Size (rs): Controls distribution shape.
Ø Scale Factor (sf): Adjusts distribution position.

Ø Express standard fraction and exponent in the logarithmic domain as a unified fixed-point exponent of the power of two as 2ulfx, 
where ulfx=e+f.

LP value decoding

29



Floating-Point v. Posit v. Logarithmic Posit Decoding
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Floating-Point v. Posit v. Logarithmic Posit Decoding
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Floating-Point v. Posit v. Logarithmic Posit Decoding

32



Advantages of Logarithmic Posits

LP: Logarithmic Posit
AF: AdaptivFloat

Ø By parameterizing the individual bitfields of LP, we are able to adapt the LP representation distribution to 
the required DNN data distribution.

Ø While also enjoying the hardware efficiency of LNS.
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Changes in Algorithm to support LP
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Uniform Quantization Candidates Logarithmic Posit Quantization Candidates

Our algorithm is general and can be easily applied to any quantization 
format by simply changing the candidate vector!



Hardware: Logarithmic Posit Accelerator

Modifications to a WS Systolic Array Mixed-Precision PE Design

35



Modifications to Systolic Array
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Modifications to Systolic Array

Decoder/Encoder Overhead is 1.03% 
of compute area for an 8x8 systolic 
array.

Exhibits weak scaling!!
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Concept of MODE
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The MODE field is used to identify the precision for computation!

*Please refer the paper for more details on this and for mixed-precision decoder circuits



Implementing Mixed-Precision Components

MP 2’s Complementor

MP Leading Zero 
Counter (LZC)

39



Mixed-Precision PE Architecture

Mixed-precision LP 
multiply-accumulate unit 
made entirely of 4-bit 
integer adder building 
blocks.

40



Mixed-Precision PE Architecture

Log-Linear Converter 
Implemented as 
Combinational Logic!
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Mixed-Precision PE Architecture

Linear Domain Addition 
made up of 2-bit adders.
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Mixed-Precision PE Architecture: Complete Flow
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Number Format Comparison
Illustrates per-layer quantization error, measured with 
Root Mean Squared Error (RMSE), for various data 
types on ViT-B.
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Mixed-Precision Quantization Results: CNN & ViT

CNNs ViTs
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Mixed-Precision Quantization Results: CNN & ViT
• Highlights:

• On average <1% 
accuracy degradation 
compared to FP 
baseline.

• Mixed-Precision LPQ 
achieves average 
weight/activation 
bitwidth of 4.2/5.5.

• 90% reduction in 
model size.
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Logarithmic Posit Accelerator Performance

Despite ANT and BitFusion exhibiting lower area when compared 
with LPA for the same number of PEs, LPA results in 
proportionately higher performance per unit area (TOPS/𝑚𝑚2) for 
mixed-precision DNN inference.LPA exhibits the lowest latency across models, with a 

modest increase in energy consumption over ANT 
attributed to overheads due to native mixed- precision 
support and conversion logic.
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Logarithmic Posit Accelerator Performance

5x Throughput Improvement

Despite incorporating mixed-precision support, 
LPA-2/4/8 achieves accuracy tending to the ideal 
scenario for both metrics, demonstrating a 
balanced trade-off.
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Summary
CONTEXT

Current Approach and Challenges
• Approach: Algorithm-Hardware Co-Design is a 

promising area towards efficient DNN inference.
• Challenges: Inefficient data formats and lack of 

generalizable automated techniques.

APPROACH
The proposed approach:
• Develop an adaptive, hardware-friendly data format.
• Identify existing limitations of automated quantization 

algorithms.
• Optimize existing hardware to support next-

generation data formats.

IMPACT
How do current results advance SOTA?
• <1% Accuracy drop across DNN model families 

post-quantization with > 15% higher compression 
ratio than competing methods.

• 2x improvement in PPA and energy-efficiency.

Next Steps
• Extend: Verify adaptability and generalizability to 

LLMs and VLMs.
• Profile: Deepen understanding of data distribution 

of modern DNN models to improve existing data-
format parameterization.

• Improve runtime of existing algorithm for faster 
quantization of large-scale models.
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