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① Motivation

Ø Uniform Quantization: Substantial distributional variance and orders 
of magnitude difference in DNN parameters causing significant 
quantization errors.

Ø Floating-Point Techniques: Fail to adapt to the tapered distribution of 
DNN parameters and use flat accuracy, have increased hardware 
complexity.

Ø Why Posits?: Posit-based representations outperform floats in DNN 
inference, offering improved dynamic range, higher accuracy, simpler 
exception handling and tapered accuracy. But still have complex 
hardware.

Ø Logarithmic Posits: A composite data type that blends the 
adaptability of posits with the hardware efficiency of LNS.

③ Algorithm: Genetic-Algorithm Based LP Quantization (LPQ)

② Logarithmic Posits (LP)
④ Hardware: Logarithmic-Posit Accelerator (LPA)

⑥ Co-Design Results

v Parameterizations for incorporating distribution-aware properties: 
ü Bits (n): Identify optimal precision for a DNN layer.
ü Exponent Size (es): Controls dynamic range.
ü Regime Size (rs): Controls distribution shape.
ü Scale Factor (sf): Adjusts distribution position.
v Express standard fraction and exponent in the logarithmic domain as 

a unified fixed-point exponent of the power of two as 2ulfx, where 
ulfx=e+f.

Ø Fitness Function:
ü A novel global-local contrastive loss, combats overfitting to calibration data and prevents premature 

convergence by minimizing representational divergence of intermediate layers.
ü Also includes a compression loss that drives the optimization to identify lower bit widths.
ü This combination of fitness function drives the genetic algorithm for layer-wise quantization.

⑤ Algorithm Component Effectiveness
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Mixed-precision LP 
MAC unit made entirely 
of integer adder building 
blocks.

Multiplication in Log 
Domain expressed as 4-
bit addition.

Linear Domain Addition 
using multiple 2-bit 
adders.

Log-Linear Converter 
implemented as gates.

5x higher throughput with only modest 
area increase due to MP-support

40% Lower Latency on average 
compared to baselines 

Mixed-precision LP PEs provides 
highest TOPS/area with best accuracy

<1 % Accuracy Degradation after Mixed-
Precision Quantization
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