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Algorithm: Genetic-Algorithm Based LP Quantlzatlon (LPQ) Framework
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» Uniform Quantization: Substantial distributional variance and orders
of magnitude difference in DNN parameters causing significant
quantization errors.
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v A novel global-local contrastive loss, combats overfitting to calibration data and prevents premature

» Logarithmic Posits: A composite data type that blends the adaptabilit A . . . ;
9 P yp P ¥ convergence by minimizing representational divergence of intermediate layers.

of posits with the hardware efficiency of LNS.

Logarithmic Posits (LP)

v" Also includes a compression loss that drives the optimization to identify lower bit widths.
v' This combination of fitness function drives the genetic algorithm for layer-wise quantization.

« Parameterizations for incorporating distribution-aware properﬂes:
v Bits (n): Identify optimal precision for a DNN layer.

v Exponent Size (es): Controls dynamic range.

v Regime Size (rs): Controls distribution shape.
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“ Express standard fraction and exponent in the logarithmic domain as (16-bits)

a unified fixed-point exponent of the power of two as 24X, where
ulfx=e+f.

Multiplication in Log
Domain expressed as 4-
bit addition.

(Learn more about standard -
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Conclusion

This work introduces LP, a new composite data type for dynamic adaptation in DNNs, and LPQ, a quantization
framework optimizing LP parameters with genetic algorithms. The LPA architecture integrates LP in a systolic
array, enhancing computational efficiency. Our co-design maintains model accuracy with <1% drop and
improves performance and energy efficiency over existing alternatives.
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