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Challenges of depth
data captured by
off-the-shelf

SENSors

. Sparse in nature.

. Incomplete (semi-dense)
depth data with holes and
artifacts of varying
distributions and sizes due
to characteristics of the
captured scene such as

Transparent

Reflective
and,

Dark
surfaces




But dense depth cues are used in a
wide range of applications such as
augmented reality, 3D reconstruction and
robotics, to provide reliable 3D spatial
information of a scene. Therefore, depth
completion as a task is employed to
generate a dense depth estimation
from an input sparse and/or
incomplete depth map for reliable
utilization in downstream tasks.




Typical Approaches to solve the Depth
Completion Problem

Convolutional Neural Networks based Learning based techniques leveraging
only on the sparse input. multi-modal information like RGB
etc. information in addition to the
sy iom  ume ume e e . b corrupted depth map. (
o e RS S B e i e ) etc.

Complex learning methodologies to
adapt to the diverse and disparate :
spatial contexts in indoor depth. ( | lWaERE

) etc.
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Broad Categories of Solving Depth
Completion Problem

REGRESSION CLASSIFICATION
Most of the Regression based techniques model Classification methods predict the probability
depth completion by regressing the depth of the depth hypotheses for each pixel and
dnrenigl WENghEnT] Sec CERpEn W REHnEss. take the depth hypothesis with the maximal
- Advantages probability as the final estimation.
Helps achieve sub-pixel level depth
compeletion « Advantages
Accurate completion in holes and artifact . Constrain the network to achieve
reglons. superior completeness and hence
- Disadvantages improve the robustness of completion.
Greater risk of overfitting and impact « Disadvanta ges
robustness

Greater risk of overfitting



Our Proposal

We seek to unify the advantages of regression and
classification in a novel model representation, that is, we
enable the model to accurately predict the depth while

maintaining robustness.

Intuition and Reasoning: It is well established that the depth hypothesis close to the ground-
truth has more potential knowledge, over the other remaining hypotheses (or depth levels) due to
the wrong induction of multi-modal. Motivated by this, we propose that estimating the weights for
all depth hypotheses is redundant, and the model only needs to do regression on the optimal
depth hypothesis for the representative depth interval that contains the ground truth depth.
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O: Yt =
{0i}izo 0, otherwise

Assuming a depth interval is discretized into K discrete ordinal
labels A = {ry, r2, ..., rc_; }, each pixel in the depth map
D € RH*W is represented as a K-length UQV, {Oi € RH xW 1k -1

How?

We propose a unified novel representation for depth, termed
UOVs, that can leverage the unified benefits of both these
techniques.

1.

The motivation behind using ordinality is that depth values
are naturally ordered, and ordinal vectors are able to
naturally encapsulate explicit order relations among depth
hypotheses.

With the natural and unified representation capability of our
proposal, we first adopt classification using ordinal labels to
narrow the depth range of the final regression by enabling the
model to classify which hypothesis is optimal and then regress
to the actual depth within the optimal hypothesis.

Therefore, the model using our unified representation
framework is able to estimate ac- curate depth like regression
methods, while also directly constraining the network like
classification methods.



Algorithm 2: Ordinal Decoding

Input :Predicted ordinal vectors
{0; e REXWYK 'K ordinal
categories produced by SID
A={ro,r2,....,Tk_1}
Output : Regressed Depth D € R *W
for (z,y) = (0,0) to (H, W) do
// Select Optimal Index
0 + argmax;ep O;Y;
// Regress depth value
D*Y « —In(1 - O,) + r%¥,;
end
return D

Algorithm 1: Ordinal Encoding

Input :Ground-truth depth Dy, € RHXW i
ordinal categories produced by SID

A= {T(), T2y eeny TK—I}
Output : Ground-truth ordinal vectors
{0; e REXW}K |
for (z,y) = (0,0) to (H,W) do
fori =0t0 K —1do
if D=Y > r*Y then

end
else
| Oi <« 0;
end
end
end
return {O;}/<,

| Oi+1—exp{—|D=¥v —r]¥|};

Unified Ordinal
Vector
Encoding and
Decoding



Realsense

Addressing real-
world depth
completion quality

While many existing depth completion
techniques have shown remarkable performance
in completing uniformly sampled sparse depth
maps from a singular sensor configuration, that
performance is not representative of the
performance on real-world depth maps with
large missing regions and semantic missing
patterns. Since indoor depth is dynamic in
nature and has varying sensor-dependent data
distributions a completion network has to
properly model the ambiguity in these depth
maps to truly generalize to the multitudinous
possibilities of noise and artefacts present in
indoor depth sensors.



How we overcome this drawback in
several SOTA techniques

The complexity we leverage to enable better and robust depth
completion is uncertainty. In this work, we handle uncertainty via a
concept known as Neutrosophic Sets (NS) owing to their superior
capability to highlight, extract and handle uncertainty information in
learning-based techniques.

Sparse Depth NLSPN CSPN Ours




Methodology: Neutrosophic Sets

A NS is made of three elements namely, Truth (T), False (F) and
Indeterminacy (I). In general, the neutrosophic set N can be
represented as a composition of the three sub-sets as follows,

N ={(T,1,F):T,I,F €[0,1]}

To transform an image to the neutrosophic domain, each pixel P (i,
j) in the original image domain is represented as P (t, I, f ) in the

neutrosophic domain where t, |, f indicate that the pixel is t% true,
1% indeterminate and f% false using the following transformations.
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Proposed Architecture
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Proposed Dual-encoder transformer

architecture

NeutroTR
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Data Preparation

1. Specular Masking: We identify regions of pos- sible specular highlights and
reflective regions in the corresponding RGB images using an adaptive color balance
threshold compared to a smoothed non-specular surface color at each pixel position.
We then mask these identified segments in the raw depth map in the raw depth.

2. Black Masking: We randomly mask surfaces and objects with pixel intensities in the
range [0, 10] to emulate absence of depth in dark surfaces in real-world depth maps.

3. Semantic Masking: Usually there are random re- gions with large contiguous holes
in depth maps, we try to emulate the same by masking off certain objects with a
probability of 0.35 identified from the corresponding segmentation map.

4. Random Noise Injection: We randomly add Gaus- sian noise to 5 — 10% of the
valid pixels, since in real-world use cases many pixels in the depth map may have
noise due to superfluous reflections from objects.

5. Depth Range Clipping: We also randomly clip 25 — 30% of depth values farther
than 8m, since commodity depth sensors present in most mobile devices give
unreliable depth for long ranges.



Loss Function

We make use of a Multiscale Ordinal Focal Loss (Lo)
as the primary training loss.

B a|qi — ui|"BCE(ui,q:), if i > 0
Lo = ‘1~ Z(w-y)Zi{(l —_ a)u BCE(ui,q:), otherwise L L + AL

where, BCE(u;, ¢;) = —qilog(u;)—(1—qg;log(1—-u;)

To emphasize depth discontinuities at object boundaries and to enhance smoothness in
homogeneous regions, we use a Morphological Edge Consistency Loss (Le) on the
regressed depth as

Le = ||Morph(Dyy) — Morph(dx)||, where an improved canny edge detection with
morphological gradients (Morph()) is applied to extract refined depth edges and

suppress noisy textural edges that are typically extracted with basic edge detectors like
Sobel.



Ablation Study on NYUv2

L, L.

RMSE (m)| REL (m))

Model MS DUEM NTR L,
S_base v
M _base v v
S.U v

MU v v

w/o L, v v v v
w/o L, v v v
Ours(reg) v v v Y
Ours(cla) Vv v v
Ours v v v

NN
R SR NENEN

0.221
0.196
0.165
0.142
0.125
0.098
0.103
0.106
0.091

0.040
0.028
0.019
0.019
0.017
0.013
0.013
0.015
0.012

MS: Multi-scale, NTR: NeutroTR

Ablation results on NYUV2 test set. In the table, S,
M, Reg, Cla, Base denote single-scale, multi-scale,
regression, classification and baseline respectively.

RGB NeutroTR .-\tttmi‘(?\‘.‘:\ﬂ-;p ' Bascline Activation Map
Layer response of NeutroTR compared with U-Net like
baseline, higher response is denoted with red and lower
tending to blue. NTrans-Net implicitly learns to gives
higher response to regions where depth is prone to errors
like at dark and reflective surfaces as compared to the

global response of CNNs.
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0.25 4

RMSE(m)

0.20 4

Visualization of the effects of choosing different discretization intervals(K) on the completion quality. 0.15 -
Lower values of K, introduce quantization errors, and large values of K produce overly smooth
output, whereas K=130 results in the optimal completion quality. 0.10 1

10 30 50 70 90 110 130 150 170 190 210
Number of Intervals

UQV performance on different intervals. We observed
that UOVs acquire the best results at K=130 with the
lowest RMSE of 0.087m.



Results on real world ToF18K
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Results on NYuv2 dataset

Ground-Truth

RGB Semi-Dense Input Depth Ground-Truth DM-LRN RGBD-GAN NLSPN Ours



Quantitative Evaluation

S—D S*D

Method RMSE (m), REL(m)} § < 1.251% § < 1.25° 1 § < 1.25* 1 | Method RMSE (m), REL(m)] § < 1.25% § <1.25° 1 § < 1.25° 1

DC-BCS [7] 0.268 0.017 98.2 99.1 99.3 Sparse2Dense [17]  0.227 0.043 97.1 99.4 99.8

RGB-GU [33] 0.253 0.019 98.0 99.1 99.3 RGBD-GAN [34] 0.103 0.016 99.4 99.9 100.0

DM-LRN [23] 0.203 0.017 98.2 99.3 99.9 ACMNet [39] 0.102 0.014 99.5 99.9 100.0

RigNet [35] 0.164 0.016 98.6 99.6 99.9 GuideNet [31] 0.101 0.015 99.5 99.9 100.0

NLSPN [18] 0.161 0.015 98.6 99.6 99.9 NLSPN [18] 0.092 0.012 99.6 99.9 100.0

RGBD-GAN [34]  0.139 0.013 98.7 99.6 99.9 RigNet [35] 0.090 0.013 99.6 99.9 100.0

Ours 0.134 0.013 98.7 99.6 99.9 Ours 0.087 0.010 99.6 99.9 100.0

NYUv2

:Method RMSE (m)| REL(m)] 6 < 1.251 6 < 1.25° 1 4 < 1.25° 1 Method RMSE (m)| REL(m)] 6 < 1.251 6 < 1.25° 1 4 < 1.25° 1
Sparse2Dense [17]  0.247 0.048 96.1 98.5 99.3 Sparse2Dense [17]  0.329 0.074 93.9 97.0 98.1
GuideNet [31] 0.234 0.044 96.3 98.7 99.3 GuideNet [31] 0.295 0.135 93.8 97.2 98.2
ACMNet [39] 0.230 0.041 96.3 98.7 99.3 ACMNet [39] 0.274 0.071 94.5 97.7 98.3
RigNet [35] 0.218 0.038 96.8 98.9 99.4 NLSPN [18] 0.267 0.063 97.3 98.1 98.5
RGBD-GAN [34] 0.212 0.031 97.1 99.2 99.7 RigNet [35] 0.265 0.063 97.1 98.1 98.5
NLSPN [18] 0.210 0.028 97.1 99.4 99.8 RGBD-GAN [34] 0.255 0.059 96.9 98.4 99.0
Ours 0.197 0.021 97.3 99.4 99.8 Ours 0.244 0.051 97.2 98.6 99.4

ToF18k SUN RGB-D



Conclusion

We present NTrans-Net, a novel multi-scale network which combines the
advantages of regression and classification techniques by proposing a UOV
representation for depth values. Further, to make the framework robust to
different sensor-dependent input distributions, we propose NeutroTR, a dual
encoder-decoder transformer with data indeterminacy handling in the
neutrosophic domain. Through our experiments, we demonstrate the flexibility
of our framework to adapt to the diverse and disparate spatial contexts and
artefacts present in depth maps. Extensive experiments demonstrate that our
proposed framework achieves state-of-the-art performance on the NYUv2
benchmark dataset, while achieving superior generalization on the real-world
ToF18K dataset-captured using Samsung Galaxy Notel0O device in indoor
scenarios. Moreover, our exhaustive ablation studies show the effectiveness of
each proposed component in the framework.



