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Challenges of depth 
data captured by 
off-the-shelf 
sensors

1. Sparse in nature.
2. Incomplete (semi-dense) 

depth data with holes and 
art i facts of varying 
distr ibutions and sizes due 
to characterist ics of the 
captured scene such as

a. Transparent
b. Reflective 

and,
c. Dark 

surfaces



But dense depth cues are used in a 
wide range of applications such as 
augmented reality, 3D reconstruction and 
robotics, to provide reliable 3D spatial 
information of a scene. Therefore, depth 
completion as a task is employed to 
generate a dense depth estimation 
from an input sparse and/or 
incomplete depth map for reliable 
utilization in downstream tasks.



Typical Approaches to solve the Depth 
Completion Problem

Convolutional Neural Networks based 
only on the sparse input. (Fangchang 
Ma et al.) etc.

Learning based techniques leveraging 
multi-modal information like RGB 
information in addition to the 
corrupted depth map. (Shivakumar et 
al.) etc.

Complex learning methodologies to 
adapt to the diverse and disparate 
spatial contexts in indoor depth. (Wang 
et al.) etc.
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REGRESSION

Most of the Regression based techniques model 
depth completion by regressing the depth 
through weighting each depth hypothesis.

• Advantages
• Helps achieve sub-pixel level depth 

compeletion

• Accurate completion in holes and artifact 
regions.

• Disadvantages
• Greater risk of overfitting and impact 

robustness

CLASSIFICATION

Classif ication methods predict the probabil ity 
of the depth hypotheses for each pixel and 
take the depth hypothesis with the maximal 
probabil ity as the f inal estimation.

• Advantages
• Constrain the network to achieve 

superior completeness and hence 
improve the robustness of completion.

• Disadvantages
• Greater risk of overfitting

Broad Categories of Solving Depth 
Completion Problem



Our Proposal

We seek to unify the advantages of regression and 
classification in a novel model representation, that is, we 
enable the model to accurately predict the depth while 
maintaining robustness.

Intuition and Reasoning: It is well established that the depth hypothesis close to the ground-
truth has more potential knowledge, over the other remaining hypotheses (or depth levels) due to 
the wrong induction of multi-modal. Motivated by this, we propose that estimating the weights for 
all depth hypotheses is redundant, and the model only needs to do regression on the optimal 
depth hypothesis for the representative depth interval that contains the ground truth depth.



How?
We propose  a  un i f ied  nove l  representa t ion for  depth,  te rmed 
UOVs,  that  can leverage  the  un i f ied  bene f i t s  o f  both these  
techn iques .  

1 . The  mot ivat ion beh ind  us ing ord ina l i ty  i s  that  depth va lues  
are  natura l ly  ordered ,  and  ord ina l  vec tors  are  ab le  to  
natura l ly  encapsu la te  exp l i c i t  o rder  re la t ions  among depth 
hypotheses .

2 . Wi th  the  natura l  and  un i f ied  representa t ion capab i l i ty  o f  our  
p roposa l ,  we  f i r s t  adopt  c lass i f i ca t ion us ing ord ina l  labe ls  to  
narrow the  depth range  o f  the  f ina l  regress ion by  enab l ing the  
mode l  to  c lass i f y  wh ich hypothes is  i s  op t ima l  and  then regress  
to  the  ac tua l  depth wi th in  the  op t ima l  hypothes is .

3 . There fore ,  the  mode l  us ing our  un i f ied  representat ion 
f ramework  i s  ab le  to  es t imate  ac-  curate  depth l i ke  regress ion 
methods ,  wh i le  a l so  d i rec t ly  cons t ra in ing the  network  l i ke  
c lass i f i ca t ion methods .

Assuming a depth interval is discretized into K discrete ordinal 
labels Λ = {r0 , r2 , ..., rK ­1 }, each pixel in the depth map       
D ∈ RH ×W is represented as a K-length UOV, {Oi ∈ RH ×W }K ­1



Unified Ordinal 
Vector 

Encoding and 
Decoding



Addressing real-
world depth 
completion quality

Whi le many ex is t ing depth complet ion 
techniques have shown remarkable per formance 
in complet ing uni formly sampled sparse depth 
maps f rom a s ingular  sensor  conf igurat ion,  that  
per formance is  not  representat ive of  the 
per formance on rea l-wor ld depth maps with 
large miss ing reg ions and semant ic  miss ing 
patterns.  S ince indoor  depth is  dynamic  in 
nature and has vary ing sensor-dependent data 
d is tr ibut ions a  complet ion network has to 
proper ly model  the ambigui ty in these depth 
maps to tru ly genera l ize to the mult i tud inous 
poss ib i l i t ies  o f  no ise and ar tefacts  present in 
indoor  depth sensors .  



How we overcome this drawback in 
several SoTA techniques

The complexity we leverage to enable better and robust depth 
completion is uncertainty. In this work, we handle uncertainty via a 
concept known as Neutrosophic Sets (NS) owing to their superior 
capabil ity to highlight, extract and handle uncertainty information in 
learning-based techniques.

RGB Sparse Depth CSPNNLSPN Ours



Methodology: Neutrosophic Sets

A NS is made of three elements namely, Truth (T), False (F) and 
Indeterminacy (I). In general, the neutrosophic set N can be 
represented as a composition of the three sub-sets as follows,

To transform an image to the neutrosophic domain, each pixel P (i, 
j) in the original image domain is represented as P (t, l, f ) in the 
neutrosophic domain where t, l, f indicate that the pixel is t% true, 
l% indeterminate and f% false using the following transformations.





Proposed Architecture
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Proposed Dual-encoder transformer 
architecture: NeutroTR
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Data Preparation

1. Specular Masking: We ident i fy regions of  pos- s ib le specular highl ights and 
ref lect ive regions in the corresponding RGB images us ing an adapt ive color balance 
threshold compared to a smoothed non-specular sur face color at each pixel  pos it ion. 
We then mask these ident i f ied segments in the raw depth map in the raw depth.

2. Black Masking: We randomly mask sur faces and objects with pixel  intens it ies in the 
range [0, 10] to emulate absence of  depth in dark sur faces in real-wor ld depth maps.

3. Semantic  Masking: Usual ly there are random re- gions with large cont iguous holes 
in depth maps, we try to emulate the same by masking of f  cer tain objects with a 
probabi l i ty of  0.35 ident i f ied from the corresponding segmentat ion map.

4. Random Noise Inject ion: We randomly add Gaus- s ian noise to 5 ­ 10% of the 
val id pixels,  s ince in real-wor ld use cases many pixels in the depth map may have 
noise due to super f luous ref lect ions from objects.

5. Depth Range Cl ipping: We also randomly c l ip 25 ­ 30% of depth values far ther 
than 8m, s ince commodity depth sensors present in most mobi le devices give 
unrel iable depth for long ranges.



Loss Function

We make use of a Multiscale Ordinal Focal Loss (Lo) 
as the primary training loss.

where, BCE(ui, qi) = ­qilog(ui)­(1­qi)log(1­ui)

To emphasize depth discontinuities at object boundaries and to enhance smoothness in 
homogeneous regions, we use a Morphological Edge Consistency Loss (Le) on the 
regressed depth as 
Le = ||Morph(Dx,y) ­ Morph(dx,y)||, where an improved canny edge detection with 
morphological gradients (Morph()) is applied to extract refined depth edges and 
suppress noisy textural edges that are typically extracted with basic edge detectors like 
Sobel.



Ablation Study on NYUv2

Ablation results on NYUv2 test set. In the table, S, 
M, Reg, Cla, Base denote single-scale, multi-scale, 
regression, classification and baseline respectively.

Layer response of NeutroTR compared with U-Net like 
baseline, higher response is denoted with red and lower 
tending to blue. NTrans-Net implicitly learns to gives 
higher response to regions where depth is prone to errors 
like at dark and reflective surfaces as compared to the 
global response of CNNs.



Visualization of the effects of choosing different discretization intervals(K) on the completion quality. 
Lower values of K, introduce quantization errors, and large values of K produce overly smooth 
output, whereas K=130 results in the optimal completion quality.

UOV performance on different intervals. We observed 
that UOVs acquire the best results at K=130 with the 
lowest RMSE of 0.087m.



Results on real world ToF18K





Results on NYuv2 dataset



Quantitative Evaluation

NYUv2

ToF18k SUN RGB-D



Conclusion

We present NTrans-Net, a novel mult i-scale network which combines the 
advantages of regression and classif icat ion techniques by proposing a UOV 
representation for depth values. Further, to make the framework robust to 
dif ferent sensor-dependent input distr ibutions, we propose NeutroTR, a dual 
encoder-decoder transformer with data indeterminacy handl ing in the 
neutrosophic domain. Through our experiments, we demonstrate the f lexibi l i ty 
of our framework to adapt to the diverse and disparate spatial contexts and 
artefacts present in depth maps. Extensive experiments demonstrate that our 
proposed framework achieves state-of-the-art performance on the NYUv2 
benchmark dataset, whi le achieving superior general ization on the real-world 
ToF18K dataset–captured using Samsung Galaxy Note10 device in indoor 
scenarios. Moreover, our exhaustive ablation studies show the ef fectiveness of 
each proposed component in the framework.


